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Fig. 1. Crossing Gingerbread Man: we propose a new framework for stable simulation of hyperelastic materials with nodes under large deformation and
generic contact constraints in real-time. Pulling the gingerbread man (58.5𝑘 DoFs for a single object) through the thin and irregular obstacles is simulated at
11.95𝑚𝑠/iteration using 5 local-global iterations per frame when maximum contact pairs are involved (800 contact constraints).

We present a GPU-friendly framework for real-time implicit simulation of

elastic material in the presence of frictional contacts. The integration of

hyperelasticity, non-interpenetration contact, and friction in real-time simu-

lations presents formidable nonlinear and non-smooth problems, which are

highly challenging to solve. By incorporating nonlinear complementarity

conditions within the local-global framework, we achieve rapid convergence

in addressing these challenges. While the structure of local-global methods
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is not fully GPU-friendly, our proposal of a simple yet efficient solver with

sparse presentation of the system inverse enables highly parallel computing

while maintaining a fast convergence rate. Moreover, our novel splitting

strategy for non-smooth indicators not only amplifies overall performance

but also refines the complementarity preconditioner, enhancing the accu-

racy of frictional behavior modeling. Through extensive experimentation,

the robustness of our framework in managing real-time contact scenarios,

ranging from large-scale systems and extreme deformations to non-smooth

contacts and precise friction interactions, has been validated. Compatible

with a wide range of hyperelastic models, our approach maintains efficiency

across both low and high stiffness materials. Despite its remarkable effi-

ciency, robustness, and generality, our method is elegantly simple, with its

core contributions grounded solely on standard matrix operations.

CCS Concepts: • Computing methodologies → Physical simulation;
Real-time simulation; Parallel algorithms.

Additional Key Words and Phrases: Physics-based animations, Real-time

simulations, GPU parallelization
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1 Introduction
Physics-based simulation of deformable materials plays a crucial

role across a variety of disciplines, such as computer graphics, ro-

botics, and medical imaging. Within these fields, it enhances visual

experiences through accurate simulations of soft objects and their

interactions with the environment, often utilizing finite element

discretization for complex nonlinear materials. An ideal physical

simulator should possess key attributes like the capacity for general-
ity in simulating different materials and the robustness to minimize

failure instances. In interactive applications, achieving real-time
performance is essential, while a framework’s simplicity is highly

valued for simplifying maintenance and development processes,

making it widely applicable across various downstream fields.

Position-based dynamics (PBD) [Müller et al. 2006] has gained

widespread adoption in real-time simulation engines due to its sim-

plicity, robustness, and efficiency. However, as PBD is not derived

from continuum mechanics principles, its real-time performance

comes at the cost of accuracy. To address this limitation, Projective

Dynamics (PD) [Bouaziz et al. 2014] employs local-global optimiza-

tion, combining localized constraint solving with global optimiza-

tion for better accuracy and efficiency. In multi-body systems, ad-

dressing contact problems typically involves utilizing either penalty

methods with soft constraints or Lagrange multiplier methods with

hard constraints. While penalty methods are computationally effi-

cient, they encounter difficulties in enforcing strict non-penetration

and accurate friction. Lagrange multiplier methods are robust and

accurate but face challenges with convergence and parallelization

in relaxation techniques like projected Gauss-Seidel [Duriez 2013].

Non-smooth Newton methods [Macklin et al. 2019], combined with

Krylov subspace solvers and complementarity preconditioner, offer

rapid convergence, high accuracy, and efficient parallelization.

We propose a frameworkwhere the local-global iterations are con-

strained by nonlinear complementarity conditions. Our simulator,

empowered by efficient matrix operations, exhibits many favorable

features: First, our framework is efficient and enables large-scale sim-

ulations in real-time, in the presence of nonlinear and non-smooth

problems.Within the real-time computational constraints, our solver

is able to converge to a desirable accuracy, thereby enhancing the

stability. Second, our method is not only general for a wide range of
hyperelastic models but also preserves efficiency across materials

with both low and high stiffness. Through extensive experiments,

our framework has been proven to be robust when solving the

complex contact problem with different challenges, including large

deformation, non-smooth contact, and accurate friction. Beyond

these advantages, our method shines in its simplicity, as the core

contributions only rely on standard matrix operations. In summary,

our contributions are listed as follows:

(1) Our method achieves a highly parallelizable structure while

maintaining a high convergence rate by transforming the

linear global system into sparse matrix multiplications.

(2) We reformulate Lagrange multiplier methods, particularly the

non-smooth Newton method, to integrate seamlessly with

local-global integrators.

(3) We introduce a strategy to separate non-smooth indicators,

resulting in both reduced Schur-complement computations

and enhanced complementarity preconditioner.

(4) Our algorithm establishes a unified, GPU-friendly system for

real-time dynamics and contact resolution, with a modular

design that ensures easy integration with other frameworks.

2 Related work
Physics-based simulation in computer graphics has been extensively

studied. In this section, we focus on discussing the most recent work

related to our method.

2.1 Implicit simulation for elastic dynamics
In computer graphics, implicit simulations [Bro-Nielsen and Cotin

1996] using backward Euler integration allow for larger time steps

compared to explicit methods [Comas et al. 2008], significantly im-

proving computational stability in stiff systems. Finite element (FE)

models [Kim and Eberle 2022; Sifakis and Barbic 2012] are a valuable

tool for understanding the underlying mechanisms in the real world,

as they provide a direct explanation of soft tissue behavior through

constitutive relations.With the rapid advancement of computational

power and methods, FE models have become increasingly suitable

for real-time and interactive simulations.

In terms of integration, the traditional implicit method employs

the Newton iteration technique to solve nonlinear problems. Initially

restricted to linear elastic models [Bro-Nielsen and Cotin 1996], the

method is later extended to the co-rotational formulation [Felippa

2000] and hyperelastic and viscoelastic materials [Marchesseau et al.

2010]. Although the Newton’s method converges fast in solving

nonlinear systems, it involves re-evaluate and invert the Hessian

matrix in each Newton iteration, which implies large computing

costs. In practice, Newton integrators typically perform only one

iteration in real-time applications [Faure et al. 2012].

In computer graphics, PBD [Müller et al. 2006] is very popular in

applications like cloth simulations owning to its high efficiency and

stable behavior. As an extension, the extended PBD (XBPD) [Macklin

et al. 2016] addresses the limitation of stiffness dependence, provid-

ing a better approximation to the implicit Euler method. Recently,

the VBD method [Chen et al. 2024] is proposed, which constrains

the positions with hyperelastic constraints. We categorize these

methods as PBD-like methods [Bender et al. 2017], where the posi-

tions of the objects are iteratively adjusted to satisfy a set of local

physical constraints. As a result, the PBD-like methods iterate in a

Gauss-Seidel-like manner, and their convergence rates are limited

by the inefficiency of propagation.

On the other hand, PD [Bouaziz et al. 2014] uses a different way

of integration (initially proposed in [Liu et al. 2013]), solving the

nonlinear implicit Euler problem through iterative local and global

steps. While the PD initially only supports the as-rigid-as-possible

(ARAP) model [Chao et al. 2010], advanced PD methods [Liu et al.

2017; Overby et al. 2017] extend the elastic model to generic hyper-

elastic models. Moreover, [Liu et al. 2017] regards the local-global
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Fig. 2. Grabbing Raptor: stable catching of an elastic raptor with a soft gripper actuated by cables. Lifting, rotating, and moving the raptor by the fingers are
complex operations where friction constraints are necessary. Gripper details can be seen at Appendix.C.

iterations as a Quasi-Newton method and accelerates it using the

L-BFGS method, thus creating what is known as LBFGS-PD. On

the other hand, another point of view is proposed in [Brown et al.

2018; Narain et al. 2016; Overby et al. 2017], considering the local-

global method as a special case of the ADMM method. This work is

extended in the WRAPD [Brown and Narain 2021] and the mixed

variational FEM [Trusty et al. 2022] to improve the convergence

rate with rotation-aware global steps. We categorize these methods

as PD-like local-global methods, also briefly local-global methods

in the rest of this paper. The key difference between the PD-like

methods and the PBD-like methods is how to normalize the local

projection results to the global coupling. Unlike PBD-like methods

that directly adjust the positions, PD-like ones normalize the results

onto the right-hand-side of the global step, via a linear mapping.

Accordingly, PD-like methods couple the local solutions through a

constant system that can be pre-factorized for efficient computing.

Compared with PBD-like methods, PD-like methods provide faster

propagation of the local results, leading to much higher convergence

rates.

Although local-global methods provide fast convergence and ef-

ficient global solution owning to pre-factorization, the global step

is hard to be parallelized on the GPU due to the strong data de-

pendence in forward and backward substitutions. To tackle this

issue, [Wang 2015] proposes replacing the global linear system with

a single Jacobi iteration and employing the Chebyshev approach

to accelerate the convergence. The method is further extended to

A-Jacobi in [Lan et al. 2022], which incorporates multiple Jacobian

iterations to enhance the potential for parallelization. To address

Jacobi methods’ poor convergence, [Fratarcangeli et al. 2016] sug-

gests using a Gauss-Seidel approach and employing graph coloring

techniques [Saad 2003] to improve parallelization. Nevertheless,

these methods for parallelizing the global steps only solve the global

system more or less approximately, thereby largely decreasing the

convergence rate.

2.2 Muti-body Contact
The collision modeling in computer graphics inherits from the nu-

merical methods in constrained optimization theory [Nocedal and

Wright 2006]. By simplifying the non-interpenetration contact as

inequality constraints, one can address the contact problems via

penalty methods [Hasegawa and Sato 2004; Kugelstadt et al. 2018]

and augmented Lagrangian methods. These methods handle con-

straints by adding penalty terms to the objective function such

that the overall variational optimization becomes unconstrained.

Despite being simple and straightforward, such methods can lead

to numerical instability under complex constraints. Another gen-

eral issue of these methods is the difficulty of including friction in

the penalty-based formulation due to the complexity in the non-

smooth complementarity conditions. To address this, [Geilinger et al.

2020] uses a hybrid approach to enforce static friction with hard

constraints. To tackle the interpenetration challenge, IPC [Li et al.

2020] employs a logarithmic barrier penalty to create a stronger

impulse for separating objects as they approach each other closely.

Furthermore, in every Newton iteration, it utilizes a CCD-aware

line search to geometrically ensure intersection-free results. The

friction modeling is also included in this pipeline through a delayed

evaluation.

To accurately model non-smooth conditions, one can formulate

frictional contact problems as complementarity problems. In op-

timization theory, these problems can be solved using Quadratic

Programming (QP) or Sequential QP for simulating linear elastic or

nonlinear hyperelastic materials [Kane et al. 1999; Kaufman et al.

2008; Nocedal and Wright 2006]. Different to the penalty methods,

these methods generally constrain the linearized system (e.g., at

each Newton solve) with Lagrange multipliers [Baraff 1996], thereby

known as Lagrangemultiplier methods. Early works like [STEWART

and TRINKLE 1996] linearize the frictional constraints along the

friction cones, thereby converting the original problem to a linear

complementarity problem (LCP). The LCP can be then solved with

relaxation methods such as Projected Gauss-Seidel (PGS) [Daviet

2020; Duriez et al. 2006; Li et al. 2018], and direct methods like pivot-

ing methods [Erleben 2013]. It has been observed in [Todorov 2010]

that the friction cone linearization could be unnecessary since the

non-smooth contact model can be simply treated as an additional

set of non-linear equations in the system. [Larionov et al. 2021] pro-

poses a smooth local implicit surface representation to accurately
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handle frictional contact between smooth objects. The Newton-

based approaches are successful in handling friction model [Bertails-

Descoubes et al. 2011]. By transforming the Signorini-Coulomb

conditions [Brogliato 2016] to equaly nonlinear complementarity

problem (NCP) functions, one can convert the origin non-smooth

problem to a root-finding one. Such approach can yield quadratic

convergence, and is decoupled with the linear solver, which means

that one can choose a fast linear solver like Krylov space solver (e.g.,

Conjugate Residual [Frâncu and Moldoveanu 2015]) for both fast

convergence and high potential for parallelization. [Macklin et al.

2019] extended this method to handle the soft materials and pro-

posed an efficient complementarity preconditioner for smoothing

the NCP functions.

In local-global methods, collisions can be handled either through

the penalty way (i.e., adding local penalty contact energies), or with

the Lagrange multipliers (i.e., constraining the global steps). The

penalty way follows the simple collision handing in PBD, dynami-

cally adding contact energies while potential collisions are detected

[Bouaziz et al. 2014; Wang et al. 2021]. The IPC energy can also be

included in this way [Lan et al. 2022]. However, such methods are

typically only adaptable to incomplete methods that are less sensi-

tive to changes in the system [Fratarcangeli et al. 2016]. In contrast,

[Overby et al. 2017] proposes constraining the global steps with

Lagrange multipliers when interpenetration is detected. In their

work, the non-smooth conditions are omitted, thereby simplifying

the complementarity problems into linear systems. [Komaritzan

and Botsch 2019] and [Ly et al. 2020] continue to use this strategy

while verifying the Signorini-Coulomb conditions in each global

step. To improve computational efficiency, [Ly et al. 2020] uses a

semi-implicit approach that approximates the system inverse.

3 Background

3.1 Implicit Euler scheme in elastic dynamics
Following [Martin et al. 2011], the implicit Euler time integration

solves the following optimization problem within the time interval

[𝑡 , 𝑡 + ℎ]:

q𝑡+ℎ = min

q

(
1

2ℎ2
| |M

1

2 (q − q̃) | |2𝐹 +
∑︁
𝑖

𝝍𝑖 (q)
)

(1)

where M represents the mass matrix; q and v denote positions and

velocity; q̃ = q𝑡 +ℎv𝑡 +ℎ2M−1fext is the predicted state with external
force fext when implicit forces are not considered; 𝝍 signifies the

elastic energy for the finite elements.

3.2 Multi-body dynamics
In multi-body systems, the typical Lagrange multiplier method in-

corporates contact forces 𝚲𝑗 into the dynamic system. Constraining

the derivative of the total energy in Equation (1) with contact con-

ditions yields:

M(q − q̃) − ℎ2fint (q) − ℎ2
∑︁
𝑗∈L

CT

𝑗 𝚲𝑗 = 0 (2a)

∀𝑗 ∈ L, C𝑗q − p̂𝑗 = 𝚫 𝑗 (2b)

∀𝑗 ∈ B, 𝚫 𝑗 = 0 (2c)

∀𝑗 ∈ C,
(
𝚲𝑗 ,𝚫 𝑗

)
∈ 𝝃𝜇 𝑗 (2d)

where fint denotes implicit internal forces, and L represents indices

for Lagrangian constraints which are categorized into binding pairs

B and non-interpenetration pairs C. The linear mapping C𝑗 maps

the mechanical state to the contact space. The item p̂ could be the

projected state in binding constraints or a parameter of minimum

separation in unilateral constraints (as in [Macklin et al. 2019]).

For each contact pair 𝑗 ∈ L, interpenetration 𝚫 𝑗 and contact

forces 𝚲𝑗 must satisfy bilateral condition or Signorini-Coulomb con-

dition 𝝃𝜇 𝑗 [Brogliato 2016] for accurate representation of bilateral

and frictional contacts. Generally, to solve the problem with numer-

ical methods, linearizing the constraints along specific directions is

performed:

Binding contact. Bilateral constraints are prevalent in binding

scenarios such as joint connections and special cases like needle

constraints [Adagolodjo et al. 2019]. The directions of bilateral con-

straints
®𝑏 ∈ R1×3

are defined for binding connections or special

collision events.

Non-interpenetration contact. Non-interpenetration contacts are

typically linearized along normal and tangent directions to prevent

interpenetration and model friction. Generally, the contact normal

should be defined by the collision detection. We refer the readers to

[Erleben 2018] for more details about the methodologies to generate

the contact normal for stable numerical solution. Given a contact

normal ®𝑛 ∈ R1×3
, two tangent directions

®𝑓1, ®𝑓2 ∈ R1×3
can be gen-

erated (e.g., via the Gram-Schmidt process) to represent the space

perpendicular to the normal. In the subsequent sections, friction

directions are unified as
®𝑓 for simplicity.

The formulation in Appendix A.1 converts the governing equation

(2) into a linearized form, as follows:

M(q − q̃) − ℎ2fint (q) − ℎ2HT

𝑏
𝝀
𝑏
− ℎ2HT

𝑛𝝀𝑛 − ℎ2HT

𝑓
𝝀
𝑓
= 0 (3a)

H𝑏q − d𝑏 = 𝜹𝑏 (3b)

∀𝑗 ∈ B, 𝛿 𝑗 = 0 (3c)

H𝑛q − d𝑛 = 𝜹𝑛 (3d)

H𝑓 v − d𝑓 = ¤𝜹𝑓 (3e)

∀𝑗 ∈ C,
(
𝜆 𝑗 , 𝛿 𝑗 , ¤𝛿 𝑗

)
∈ 𝝃𝜇 𝑗 (3f)

In this formulation, B = {𝑏1, ..., 𝑏𝑚} represents bilateral con-

straints, and C = {𝑐1, ..., 𝑐𝑛} represents unilateral constraints along
with frictional constraints. The Contact Jacobian matrix H compiles

the linearized contact mappings along specific constraint directions,

exemplified by
®𝑏, ®𝑛, or ®𝑓 . The elements d, 𝜹 , and 𝝀 linearize the

contact items p̂ (or û), 𝚫, and 𝚲, respectively, along these constraint
directions. To accurately capture the frictional behavior of contacts,

the Signorini-Coulomb condition 𝝃𝜇 𝑗 should be satisfied as follows:

∀𝑗 ∈ C, 0 ≤ 𝛿𝑛,𝑗 ⊥ 𝜆𝑛,𝑗 ≥ 0 (4a)

∀𝑗 ∈ A, ¤𝛿𝑓 , 𝑗 +
| ¤𝛿𝑓 , 𝑗 |
|𝜆𝑓 , 𝑗 |

𝜆𝑓 , 𝑗 = 0 (4b)

∀𝑗 ∈ A, 0 ≤ | ¤𝛿𝑓 , 𝑗 | ⊥ 𝜇 𝑗𝜆𝑛,𝑗 − |𝜆𝑓 , 𝑗 | ≥ 0 (4c)

∀𝑗 ∈ I, 𝜆𝑓 , 𝑗 = 0 (4d)
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where A = { 𝑗 ∈ C | 𝜆𝑛,𝑗 > 0} is the set of all active contact indices,
and I = { 𝑗 ∈ C | 𝜆𝑛,𝑗 ≤ 0} is its complement in C. We refer read-

ers to the Appendix A.2 for more details on the frictional contact

formulation. The constrained system in Equation (3) actually refers

to a nonlinear complementarity problem. Various numerical meth-

ods for solving such problems have been proposed in the literature

[Andrews and Erleben 2021; Erleben 2013], such as direct methods,

relaxation methods, and non-smooth Newton methods.

3.3 Local-global iterative methods
The PD-like local-global methods address the nonlinear optimization

in Equation (1) through recursive local-global iterations [Bouaziz

et al. 2014; Liu et al. 2013; Overby et al. 2017]. In the local step, the

positions q are fixed, and suitable projected local states p𝑖 are sought
by solving local and independent sub-problems:

p𝑘𝑖 = min

p𝑖

𝑤𝑖

2

| |p𝑖 − G𝑖q𝑘 | |2𝐹 + 𝜻𝑖 (p𝑖 ) (5)

where 𝑘 denotes the current local-global (L-G) iteration; 𝑤 is a

nonnegative weight for each constraint; G is the linear mapping

from the mechanical state q to the projection state p. For elastic en-
ergy, the nonlinear energy function 𝜻 could be generic hyperelastic

energy 𝝍 or an indicator function as in the Projective Dynamics

[Bouaziz et al. 2014] (𝜻 = 0 if p ∈ 𝑆𝑂 (3) and 𝜻 = +∞ otherwise).

Moreover, the local step formulation provides large flexibility to

model other generic constraints, such as bending energy in cloth

simulations and positional constraints.

After solving the independent local problems, the global step

couples all the projected results in a global system:

A︷                      ︸︸                      ︷(
M + ℎ2

∑︁
𝑖

𝑤𝑖GT

𝑖 G𝑖

)
q𝑘+1 =

b𝑘︷                        ︸︸                        ︷(
Mq̃ + ℎ2

∑︁
𝑖

𝑤𝑖GT

𝑖 p𝑘𝑖

)
(6)

In the global step, the right-hand-side (RHS) b𝑘 assembles the

projected state p𝑘 in the current L-G iteration. Since G depends only

on predefined projection constraints, the global system matrix A re-

mains invariant throughout the simulation. Repeating the local and

the global step recursively (Algorithm 1), the integrator efficiently

converges to the solution of Newton’s method.

ALGORITHM 1: Local-global integrators

while simulation do
q̃ = q𝑡 + ℎv𝑡 + ℎ2M−1fext;
for 𝑘 ∈ {0, ..., 𝑛} do

p𝑘
𝑖
= 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡 (G𝑖q𝑘 ); // local step

b𝑘 = Mq̃ + ℎ2∑𝑖 𝑤𝑖GT

𝑖
p𝑘
𝑖
; // assemble the RHS

q𝑘+1 = A−1b𝑘 ; // global step

end
q𝑡+ℎ = q𝑘 ; // integration

v𝑡+ℎ = 1

ℎ
(q𝑘 − q𝑡 );

end

The success of local-global methods can be attributed to several

factors: First, the flexibility in the local step allows for simulating

different constraints in a unified framework. The local steps are

parallelizable due to their independence. Second, the global step

efficiently couples the constraints through the system matrix A.

Since local solutions are propagated immediately through global

solving, the efficient constraint coupling leads to rapid convergence,

especially in the initial iterations. In general, local-global methods

converge in significantly fewer iterations than PBD-like methods,

although not as few as Newton’s method. Most importantly, the

system matrix A remains constant throughout the simulation. Ex-

ploiting this property could significantly reduce the computational

cost of the global step. A common approach is to pre-factorize the

system A once at initialization, which reduces the global steps to

solving only sparse triangular systems (STS).

Despite its efficiency, the forward and backward substitutions in

STS are difficult to be computed in parallel due to strong data depen-

dencies, limiting its applicability to large-scale problems. Moreover,

it is also challenging to model accurate frictional contacts in local-

global methods due to the requirement of satisfying complex non-

smooth conditions described in Section 3.2. In this paper, we seek

for a method that addresses all these challenges. For this purpose,

we propose a simple yet highly efficient method for parallelizing

the global step (Section 4), and develop a unified framework where

the local-global iterations are constrained by nonlinear complemen-

tarity conditions to handle frictional contacts (Section 5).

4 Sparse Inverse Solution

4.1 Global step solution strategy
In Section 2.1, we review different numerical solvers used for solving

the global step in the literature. These solvers can be generally

classified into complete and incomplete solutions.

Complete Solution. The traditional strategy [Bouaziz et al. 2014;

Brown and Narain 2021; Liu et al. 2013; Overby et al. 2017] involves

fully resolving the linear system q𝑘+1 = A−1b𝑘 during each L-

G iteration with pre-factorized system. As discussed in Section

3.3, although immediate propagation via complete global solving

achieves fast convergence, data dependencies in the STS make it

difficult to implement efficient parallel computation.

Incomplete Solution. An alternative perspective [Wang 2015] sug-

gests that computing an exact solution is both redundant and com-

putationally inefficient, especially considering that the local step

requires modifications to the linear system in subsequent local-

global iterations. Therefore, incomplete methods [Fratarcangeli et al.

2016; Lan et al. 2022; Wang 2015] approximate the exact solution

q𝑘+1 = A−1b𝑘 with q𝑘+1 = P̃b𝑘+Q̃q𝑘 , where P̃ and Q̃ depend on spe-

cific iterative algorithms. These methods offer substantial potential

for parallelization since the iterative solvers typically involve sparse

matrix-vector multiplications (SpMV) that are easily parallelized

on both CPU and GPU architectures. However, approximating the

global solve significantly decreases the efficiency of propagating lo-

cal solutions, leading to slower convergence. Consequently, a larger

number of L-G iterations (usually one or more orders of magni-

tude higher) are required to reach the same level of accuracy as the

complete solution. Moreover, each additional iteration leads to an

extra local step, which possibly becomes the bottleneck for real-time
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performance, especially in solving hyperelastic local problems.

Our goal is to develop a method that both efficiently couples

local results with the complete solution for fast convergence and

offers extensive parallelization capabilities. A naive propose is to

explicitly pre-compute the inverse of A, such that the global steps

simply turn to a matrix-vector product, which is straightforward

to be parallelized. However, inverting the matrix requires large

precomputation cost and, more importantly, massive memory usage

for large-scale simulations.

In practice, although the systemmatrixA is sparse, its inverseA−1

is typically dense. For instance, a deformable object with 10𝑘 vertices

requires more than 3𝐺𝐵 of memory for storing dense matrices (as

evidenced by experimental data in Tables 1 and 2). Due to memory

constraints and the overhead of computing and transferring large

matrices to GPUs, this method becomes impractical for large-scale

simulations.

An immediate question is: does there exist a sparse system that

can accurately represent the inverse A−1
? The answer is affirmative,

and we give the details in the following subsection.

4.2 Sparse inverted local-global method
Given the Cholesky factor L of the system, its inverse L−1

is ex-

actly the sparse system we are seeking. Following [Benzi and Tuma

2000; Bridson and Tang 1999; Scott and Tůma 2023], we present the

following theorem:

Theorem 1. Let A be a symmetric positive definite (SPD) matrix
with its Cholesky factor L. The sparsity structure S{L−1} is the union
of all entries (𝑖, 𝑗) where 𝑖 is an ancestor of 𝑗 in the elimination tree
T (A).
The theorem implies that L−1

does not need to be fully dense.

In practice, for SPD systems in local-global methods, techniques

like fill-in reduction ordering (e.g., nested dissection [George 1973])

can efficiently reduce the number of ancestors of vertices in T (A),
resulting in a highly sparse L−1. A simple example in Figure 3 illus-

trates this concept. The sparse scheme outperforms a full traversal of

L, yielding both efficient computation of S = L−1 and high sparsity

in S. The same conclusion can be drawn from [Zeng et al. 2022] con-

cerning the STS solution in their method. By explicitly computing S
and storing it in sparse format, we achieve the desired sparse system

which is capable of representing the system inverse. Specifically,

the system inverse A−1
is given by the following product:

A−1 = STS (7)

such that the overall global solution is transformed into two SpMV

operations:

q𝑘+1 = STSb𝑘 (8)

Consequently, our sparse inverse method combines both fast

convergence and high potential for parallelization, while maintain-

ing simplicity through its use of standard matrix operations. As a

trade-off, our method requires additional memory usage for S and

extra time for its computation. We give comprehensive evaluation

of memory usage, convergence rate, and computational efficiency

in Sections 7.2, 7.3, and 7.4, respectively. On the other hand, our

method heavily depends on the system invariability, which makes it

challenging to incorporate penalty-based methods that dynamically

modify the system during contact handling. To address this, in the

next section, we propose using the Lagrange multiplier methods to

constrain the global steps where the complementarity conditions

are effectively verified in each L-G iteration.

Fig. 3. Sparse solution: after reducing the matrix pattern fill-in through
nested dissection, the Cholesky factor L is reordered and partitioned into
sub-blocks. For a given column 𝑘 in the identity matrix I, the requisite
structure to be processed in L consists of 𝑘 and its ancestors (red nodes) in
the elimination tree.

ALGORITHM 2: Sparse inverted local-global integrators

L = Cholesky(A);
S = L−1I;
while simulation do

q̃ = q𝑡 + ℎv𝑡 + ℎ2M−1fext;
for 𝑘 ∈ {0, ..., 𝑛} do

p𝑘
𝑖
= 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡 (G𝑖q𝑘 ); // local step

b𝑘 = Mq̃ + ℎ2∑𝑖 𝑤𝑖GT

𝑖
p𝑘
𝑖
; // assemble the RHS

q𝑘+1 = STSb𝑘 ; // global step

end
q𝑡+ℎ = q𝑘 ; // integration

v𝑡+ℎ = 1

ℎ
(q𝑘 − q𝑡 );

end

5 Multi-body dynamics with accurate frictional contact
In Section 4, we introduce the sparse inverse approach for local-

global methods. This section now shifts its focus to addressing

contact-related issues within the local-global framework. Although

several efficient techniques have been developed to handle non-

penetration contacts within local-global frameworks, none fully cap-

tures the accurate contact and friction behaviors. The non-smooth

Newton method has proven effective for its accuracy and stability

in multi-body dynamics. However, it is not inherently compatible

with local-global methods, as existing approaches mainly combine

Newton’s method with impulse-based integration.

In this section, we derive a reformulation to integrate the non-

smooth Newton method into the local-global framework. In Section
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5.1, we establish the compatibility of the Lagrange multiplier meth-

ods within the local-global framework. By considering the local-

global iterations as quasi-Newton iterations (referencing [Liu et al.

2017]), we demonstrate the equivalence between position-based

local-global integration and impulse-based integration, effectively

merging these two methodologies within a unified framework (Sec-

tion 5.2). Subsequently, in Section 5.3, we propose a strategy that

splits out the non-smooth indicators, allowing us to significantly

reduce computational costs in the Schur complement calculation.

This approach also enables us to develop an effective complemen-

tarity preconditioner (Section 5.4). Finally, in Section 6, we conclude

our approach as a GPU-friendly framework.

5.1 Constrained global step
As illustrated in Algorithm 1, general local-global methods directly

update positions q without explicitly computing internal forces.

Therefore, it is not straightforward to integrate the Lagrange multi-

plier method shown in Equation (2) into the local-global algorithm.

To bridge this gap, we first evaluate the impulse Δv in the global

steps in Equation (6) within each L-G iteration:

MΔv =
1

ℎ
M
(
q𝑘+1 − (q𝑡 + ℎv𝑡 )

)
= ℎfext + ℎ2

(∑︁
𝑖

𝑤𝑖GT

𝑖 p𝑘𝑖 −
∑︁
𝑖

𝑤𝑖GT

𝑖 G𝑖q
𝑘+1

) (9)

In an isolated system (excluding contact forces), the impulse Δv
is generated by both external and internal forces, allowing us to

compute the internal forces for the current L-G iteration 𝑘 :

fint (q𝑘+1) = ℎ

(∑︁
𝑖

𝑤𝑖GT

𝑖 p𝑘𝑖 −
∑︁
𝑖

𝑤𝑖GT

𝑖 G𝑖q
𝑘+1

)
(10)

By incorporating Equation (10) into the constrained implicit Euler

solver in Equation (3a), we derive the constrained global step:

A︷                      ︸︸                      ︷(
M + ℎ2

∑︁
𝑖

𝑤𝑖GT

𝑖 G𝑖

)
q𝑘+1 −

b𝑘︷                        ︸︸                        ︷(
Mq̃ + ℎ2

∑︁
𝑖

𝑤𝑖GT

𝑖 p𝑘𝑖

)
−ℎ2HT

𝑏
𝝀𝑘+1
𝑏

− ℎ2HT

𝑛𝝀
𝑘+1
𝑛 − ℎ2HT

𝑓
𝝀𝑘+1
𝑓

= 0

subject to Equations (3b) - (3f)

(11)

A similar formulation can be found in [Overby et al. 2017], which

simplifies the NCP by disregarding the Signorini-Coulomb condi-

tions and converting it into a linear problem. For a thorough solution

to the contact problem, we propose using the non-smooth Newton

method, which will be explained in detail in the following section.

5.2 Non-smooth constrained local-global integration
The non-smooth Newton method reformulates the complementarity

conditions into equivalent NCP functions:

0 ≤ 𝑎 ⊥ 𝑏 ≥ 0 ⇆ 𝝓 (𝑎, 𝑏) = 0 (12)

where the NCP function 𝝓 transforms the original problem into a

root-finding one. In practice, 𝝓 could be formulated as either the

minimum-map formulation or the Fischer-Burmeister formulation:

𝝓min (𝑎, 𝑏) = min(𝑎, 𝑏) (13)

𝝓FB (𝑎, 𝑏) = 𝑎 + 𝑏 −
√︁
𝑎2 + 𝑏2 (14)

As in [Macklin et al. 2019], we use complementarity precondition-

ers r to improve the convergence in nonlinear integration. We refer

the readers to Appendix B for the detail formulation of different

NCP functions and their derivatives. By considering interpenetra-

tion 𝜹 and contact forces 𝝀 as arguments of NCP functions, the

non-smooth Newton method reformulates the constrained global

step (Equation (11)) as follows:

Aq𝑘+1 − b𝑘 − ℎ2JT
𝑏
𝝀𝑘+1
𝑏

− ℎ2JT𝑛𝝀
𝑘+1
𝑛 − ℎ2JT

𝑓
𝝀𝑘+1
𝑓

= 0 (15a)

J
𝑏

q𝑘+1 − d
𝑏
+ E

𝑏
𝝀𝑘+1
𝑏

= 0 (15b)

𝝓𝑛 (𝜹𝑘+1𝑛 ,𝝀𝑘+1𝑛 ) = 0 (15c)

𝝓
𝑓
( ¤𝜹𝑘+1

𝑓
,𝝀𝑘+1

𝑓
) = 0 (15d)

where solving the non-smooth conditions in Equations (3d) - (3f)

involves finding roots for NCP functions.

For bilateral constraints, J
𝑏

= H𝑏 represents the non-smooth

Jacobian matrix, while E
𝑏
= 𝑑𝑖𝑎𝑔(𝑒𝑏0 , ..., 𝑒𝑏𝑚 ) is a diagonal compli-

ance matrix consisting of inverse stiffness coefficients 𝑒 (following

[Macklin et al. 2019]). By setting 𝑒 > 0, we establish quadratic

energy potentials with a stiffness weight of 𝑒−1. Besides, setting
𝑒 = 0 is equivalent to the bilateral condition in Equations (3b) - (3c),

resulting in a hard constraint with infinite stiffness.

For unilateral and frictional constraints, the non-smooth Jacobian

matrix J is derived from the partial derivatives of 𝝓 with respect to

position q or velocity v. The non-smooth compliance matrix E is

derived from the partial derivatives of 𝝓 with respect to 𝝀𝑛 and 𝝀𝑓 :

J𝑛 =
𝜕𝝓𝑛
𝜕q

, E𝑛 =
𝜕𝝓𝑛
𝜕𝝀𝑛

J
𝑓
=

𝜕𝝓𝑓

𝜕v
, E

𝑓
=

𝜕𝝓𝑓

𝜕𝝀𝑓

(16)

With Δq = q𝑘+1 − q𝑘 and Δv = v𝑘+1 − v𝑘 = 1

ℎ
(q𝑘+1 − q𝑘 ), we

write the conditions in Equations (15b) - (15d) into the position-

based form using a first-order Taylor expansion:

0 = J
𝑏

q𝑘+1 − d
𝑏
+ E

𝑏
𝝀𝑘+1
𝑏

= J
𝑏

q𝑘+1 + E
𝑏
Δ𝝀

𝑏
− d

𝑏
+ E

𝑏
𝝀𝑘
𝑏

(17a)

0 = 𝝓𝑛 (𝜹𝑘+1𝑛 ,𝝀𝑘+1𝑛 )

= 𝝓𝑛 (𝜹𝑘𝑛 ,𝝀𝑘𝑛) + J𝑛Δq + E𝑛Δ𝝀𝑛

= J𝑛q𝑘+1 + E𝑛Δ𝝀𝑛 + 𝝓𝑛 (𝜹𝑘𝑛 ,𝝀𝑘𝑛) − J𝑛q𝑘
(17b)

0 = 𝝓
𝑓
( ¤𝜹𝑘+1

𝑓
,𝝀𝑘+1

𝑓
)

= 𝝓
𝑓
( ¤𝜹𝑘

𝑓
,𝝀𝑘

𝑓
,𝝀𝑘𝑛) + J

𝑓
Δv + E

𝑓
Δ𝝀

𝑓

=
1

ℎ

(
J
𝑓

q𝑘+1 + ℎE
𝑓
Δ𝝀

𝑓
+ ℎ𝝓

𝑓
( ¤𝜹𝑘

𝑓
,𝝀𝑘

𝑓
,𝝀𝑘𝑛) − J

𝑓
q𝑘

) (17c)
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Assembling the system for Equations (15a) and (17), we have:
A −JT

𝑏
−JT𝑛 −JT

𝑓

J
𝑏

1

ℎ2
E
𝑏

0 0
J𝑛 0 1

ℎ2
E𝑛 0

J
𝑓

0 0 1

ℎ
E
𝑓




q
ℎ2Δ𝝀

𝑏
ℎ2Δ𝝀𝑛
ℎ2Δ𝝀

𝑓

 =


g
h
𝑏

h𝑛
h
𝑓

 (18)

where

g = b𝑘 + ℎ2JT
𝑏
𝝀𝑘
𝑏
+ ℎ2JT𝑛𝝀

𝑘
𝑛 + ℎ2JT

𝑓
𝝀𝑘
𝑓

(19a)

h
𝑏
= d

𝑏
− E

𝑏
𝝀𝑘
𝑏

(19b)

h𝑛 = −𝝓𝑛 (𝜹𝑘𝑛 ,𝝀𝑘𝑛) + J𝑛q𝑘 (19c)

h
𝑓
= −ℎ𝝓

𝑓
( ¤𝜹𝑘

𝑓
,𝝀𝑘

𝑓
,𝝀𝑘𝑛) + J

𝑓
q𝑘 (19d)

Grouping the contact items such that

J =

J
𝑏

J𝑛
J
𝑓

 , 𝝀 =


𝝀
𝑏

𝝀𝑛
𝝀
𝑓

 , h =


h
𝑏

h𝑛
h
𝑓

 ,
and E =


1

ℎ2
E
𝑏

0 0
0 1

ℎ2
E𝑛 0

0 0 1

ℎ
E
𝑓

 ,
(20)

we can rewrite Equation (18) as[
A −JT

J E

] [
q

ℎ2Δ𝝀

]
=

[
g
h

]
(21)

which eventually leads to a saddle point problem after a Schur-

complement: (
JA−1JT + E

)
Δ𝝀 =

1

ℎ2

(
JA−1g − h

)
(22)

A key advantage of the non-smooth Newton method is its inde-

pendence from the linear solver used for the saddle point system

in Equation (22). This flexibility allows for various solver choices:

decomposition methods can be used for precise solutions in small-

scale problems, while Krylov subspace methods offer both good

convergence and parallelization potential for large-scale problems.

After computing Δ𝝀, we solve the global step by integrating the

contact forces 𝝀𝑘+1, with corrections to the right-hand side:

𝝀𝑘+1 = 𝝀𝑘 + Δ𝝀 (23a)

q𝑘+1 = A−1
(
b𝑘 + ℎ2JT𝝀𝑘+1

)
(23b)

The local-global iteration constrained with non-smooth func-

tions is outlined in Algorithm 3. Implementing the non-smooth con-

straints into the local-global methods brings two major additional

computing cost within each L-G iteration: the Schur-complement

JA−1JT and the linear system solution in Equation (22). As discussed

earlier, the flexibility in choosing linear solvers enables us to use

Krylov subspace methods, such as Conjugate Gradient (CG) and

Conjugate Residual (CR), which are well-suited for parallel imple-

mentation on both CPUs and GPUs for large-scale problems.

In contrast, efficiently computing the Schur-complement is chal-

lenging as it involves solving a large linear system (scale of DOFs

𝑛) with multiple right-hand sides (scale of contact constraints 𝑐).

ALGORITHM 3: Non-smooth constrained local-global

method

while simulation do
Perform collision detection;

q̃𝑘 = q𝑡 + ℎv𝑡 + ℎ2M−1fext;
for 𝑘 ∈ {0, ..., 𝑛} do

p𝑘
𝑖
= 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡 (G𝑖q𝑘 ); // local step

b = Mq̃ + ℎ2∑𝑖 𝑤𝑖GT

𝑖
p𝑘
𝑖
;

Evaluate J, E, g, h;

Δ𝝀 = 1

ℎ2

(
JA−1JT + E

)−1 (
h − JA−1g

)
; // solve

constraint linear system

𝝀𝑘+1 = 𝝀𝑘 + Δ𝝀;

q𝑘+1 = A−1
(
b + ℎ2JT𝝀𝑘+1

)
; // apply constraint

correction

end
q𝑡+ℎ = q𝑘+1; // integration

v𝑡+ℎ = 1

ℎ

(
q𝑘+1 − q𝑡

)
;

end

Such computation can easily become the bottleneck in case of a de-

tailed mesh discretization or large amount of contacts. The solution

in [Macklin et al. 2019] simplifies the computing by replacing the

Hessian by a diagonal approximation computed in each Newton

iteration. In general, this should cause slower convergence since

propagating the impact of constraints through the non-diagonal

entries is eliminated, leading to weak coupling between the con-

straints. To address this problem, we present effective enhancements

in subsequent sections.

5.3 Splitting out non-smooth indicators
We propose a splitting strategy to address the expensive computa-

tion of the Schur-complement JA−1JT in each L-G iteration. Given

the formulations of non-smooth Jacobian in Equations (47) (50) (53)

(56) for different NCP functions, we unify these formulations in

following way:

J𝑛min
= 𝜔𝑛min

H𝑛 with 𝜔𝑛min
=

{
1 if 𝜹𝑛 ≤ r𝝀𝑛
0 otherwise

(24a)

J𝑓min
= 𝜔 𝑓min

H𝑓 with 𝜔 𝑓min
=

{
1 if 𝝀𝑛 > 0
0 otherwise

(24b)

J𝑛FB
= 𝜔𝑛FB

H𝑛 with 𝜔𝑛FB
= 1 − 𝜹𝑛√︁

𝜹2𝑛 + r2𝝀2𝑛
(24c)

J𝑓FB = 𝜔 𝑓FBH𝑓 with 𝜔 𝑓FB =

{
1 if 𝝀𝑛 > 0
0 otherwise

(24d)

where we define the non-smooth indicators 𝜔 as the weighting

parameters for H.
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In matrix form, we can reformulate the non-smooth Jacobian as

follows:

J =


𝜔0

. . .

𝜔𝑐

 H = ΩH (25)

where Ω is a diagonal matrix containing the non-smooth indicators.

A key finding is that the non-smooth indicators 𝜔 dominate the

dynamic behavior of the non-smooth Jacobian J, while H remains

static throughout the current time step. This is because H only

depends on the output of the collision detection and the constraint

linearization which are performed only once at the beginning of

the time step. With Equation (25), the Schur-complement in each

Newton iteration becomes:

JA−1JT = ΩHA−1HTΩT = ΩWΩT
(26)

where W = HA−1HT
is called delasus operator in multi-body dy-

namics, and it only needs to be computed once per time step. Con-

sequently, this converts the original𝑚 Schur-complement computa-

tions (where𝑚 is the number of Newton or local-global iterations)

into a single Schur-complement computation at the beginning of

the time step, plus 2 ×𝑚 diagonal matrix - matrix multiplications,

which are typically much more efficient.

The splitting strategy can be applied for non-smooth Newton

methods with generic linear solvers. Moreover, referring back to the

sparse inverse resolution outlined in Section 4, we can efficiently

compute the Schur-complement through matrix product operations

as follows:

W = HA−1HT = HSTSHT
(27)

In contrast to the diagonal approximation detailed in [Macklin et al.

2019], our exact solution can efficiently couple the constraints using

sparse matrix - sparse matrix multiplication (SpGEMM) operations

which are fundamental operations for sparse matrices.

To accelerate the computation of Equation (27), one can utilize

the reuse strategy described in [Zeng et al. 2022] to exploit shared

contact data between consecutive time steps.

5.4 Complementarity precondition
Another advantage of explicitly computing W is that it provides an

effective complementarity preconditioner. As discussed in [Macklin

et al. 2019], applying a preconditioner 𝑟 to NCP functions dose not

change the solution of the original problem. However, using the

preconditioner significantly affects the convergence rate of the non-

smooth Newton method and our local-global method constrained

with NCP functions.

The strategy in [Macklin et al. 2019] for choosing the precon-

ditioner is to ensure both sides of the complementarity equation

have the same slop: For a unilateral constraint, r𝑗 = ℎ2
[
JM−1JT

]
𝑗 𝑗

is used to achieve appropriate scaling in the position-force rela-

tionship between 𝜹 𝑗 and 𝝀 𝑗 . For a frictional constraint, the scaling

factor should be r𝑗 = ℎ
[
JM−1JT

]
𝑗 𝑗

to follow the velocity-force

relationship between
¤𝜹 𝑗 and 𝝀 𝑗 .

However, there are two problems to use such preconditioner. First,

the preconditioner r is computed by J while J actually depends on

r, leading to a circular dependency issue. Second, using the mass

inverse will decrease the efficiency of the preconditioner. This is

particularly obvious in soft body simulations with high-stiffness

materials, where the stiffness matrix, rather than the mass matrix,

dominates the system’s diagonal elements.

To address these problems, we propose computing the precondi-

tioner using the diagonal elements in the delasus operator :

Unilateral constraint: r𝑗 = ℎ2W𝑗 𝑗 (28a)

Frictional constraint: r𝑗 = ℎW𝑗 𝑗 (28b)

We give several reasons for using this strategy: First, our precondi-

tioner uses A−1
, instead of M−1

to couple the constraints, efficiently

taking the stiffness into consideration. Second, the delasus operator
W is computed at the beginning of each time step, thereby avoiding

the circular dependency issue. Finally, as shown in previous studies

of complementarity problems [Erleben 2013], the delasus operator

(a) Our system inverse
[
HA−1HT

]
𝑗 𝑗

complementarity preconditioner.

(b) Mass inverse
[
HM−1HT

]
𝑗 𝑗

complementarity preconditioner.

Fig. 4. Stick-Sliding test: simulating a high-stiff block on a slope. With the
analytical stick-sliding discontinuity 𝜇∗ = 𝑡𝑎𝑛 (10𝜋/180) = 0.17632698, the
ideal behavior is that the box sticks to the plane when 𝜇 > 𝜇∗, and slides
when 𝜇 ≤ 𝜇∗. (a) Our complementarity preconditioner with the system
inverse achieves the accuracy level at 0.001. (b) The complementarity precon-
ditioner computed with the mass inverse can only capture the discontinuity
for stick-sliding behavior with an accuracy of 0.1.
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ALGORITHM 4: A unified and GPU-friendly pipeline for

solving elastic dynamics involving fricitonal contacts

L = Cholesky(A);
S = L−1I;
while simulation do

Perform collision detection;

W = HSTSHT
; // computing delasus operator

q̃ = q𝑡 + ℎv𝑡 + ℎ2M−1fext;
for 𝑘 ∈ {0, ..., 𝑛} do

p𝑘
𝑖
= 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡 (G𝑖q𝑘 ); // local step

b = Mq̃ + ℎ2∑𝑖 𝑤𝑖GT

𝑖
p𝑘
𝑖
;

Evaluate Ω, J, E, g, h;

Δ𝝀 = 1

ℎ2

(
ΩWΩT + E

)−1 (
h − JSTSg

)
; // solve

constraint linear system

𝝀𝑘+1 = 𝝀𝑘 + Δ𝝀;

q𝑘+1 = STS
(
b + ℎ2JT𝝀𝑘+1

)
; // apply constraint

correction

end
q𝑡+ℎ = q𝑘+1; // integration

v𝑡+ℎ = 1

ℎ

(
q𝑘+1 − q𝑡

)
;

end

W inherently acts as a scaling factor by establishing the connection

between interpenetration and contact force (e.g., 𝜹 = ℎ2W𝝀 for LCP

[Duriez et al. 2006; Zeng et al. 2022]).

Consequently, our complementarity preconditioning strategy pro-

vides effective scaling for the NCP parameters. In Section, 7.6 we

present experimental results demonstrating our method’s efficiency

in accurately capturing the discontinuities between sticking and

sliding behavior.

6 A GPU-friendly framework and implementation
Our final integrated algorithm is presented in Algorithm 4, where

the modifications in orange highlight our core contributions with

efficient forward matrix operations.

In conclusion, we elaborate on the synergistic efficiency of com-

bining the sparse inverse local-global method with the non-smooth

Newton method.

The sparse inverse local-global method relies on system invariabil-

ity, precluding penalty-based contact methods that would modify

the system matrix. As a Lagrange multiplier approach, the non-

smooth Newton method operates without such alterations, effec-

tively ensuring the fulfillment of complementarity conditions during

global steps.

In contrast, complete-solution-based local-global methods facili-

tate achieving the desired precision with a limited number of iter-

ations. This characteristic aligns well with the preferences of the

non-smooth Newton method, as it helps reduce significant compu-

tational cost. Notably, the sparse inverse method provides efficient

computation of the Schur-complement by transforming the linear

problem into matrix multiplication operations.

This unified approach enables parallelization across all major

computational stages, making it well-suited for GPU acceleration.

The implementation details are as follows.

Matrix operations. As discussed in Section 4.2, the matrix opera-

tions are highly parallelizable on both the CPU and the GPU. We

use the NVIDIA’s cuSPARSE library to implement SpMV operations

in global steps. The Schur-complement (Equation (27)) can be im-

plemented with SpGEMM operations. To accelerate this process,

we implement the reusing strategy in [Zeng et al. 2022] to reduce

computational costs.

Constraint linear solver and NCP functions. We choose the Conju-

gate Residual (CR) as our linear solver in the constraint space, and

the Fischer-Burmeister function as our NCP function, since their

efficiency has been proven in [Macklin et al. 2019]. We implement a

GPU version of the CR solver using NVIDIA cuBLAS library.

Local step. Following [Overby et al. 2017], we implement the

singular value decomposition (SVD) and a small-scale L-BFGS quasi-

Newtonmethod to solve the local nonlinear problems in Equation (5).

Such process is naturally parallelizable owning to the independency

of the local problems to each other. Since the local step is not the

core of our methods, we implement a CPU-based parallelization

for it. The migration of this process to create a fully GPU-based

simulator remains future work. Our current implementation utilizes

a hybrid CPU-GPU framework.

Collision detection. Our contact method, based on the non-smooth

Newton method, is decoupled with the collision detection. It is com-

patible with any detection method that provides accurate collision

pair information. Like in [Ly et al. 2020] and [Macklin et al. 2019], we

implement collision detection using simple proximity queries with

basic parallelization strategies. For simplicity, we do not activate

the self-collision handling in our scenarios. However, our method

supports self-collisions in principle, as the contact Jacobian H can

effectively couple the DOFs within the same object.

Chebyshev acceleration. As indicated in [Wang 2015], local-global

methods can be accelerated with the Chebyshev method. However,

since the complete solution converges fast in the first iterations

where the Chebyshev method shows minimal impact, we do not

use the Chebyshev acceleration for our examples which generally

achieve real-time performance with just a few local-global iterations.

7 Results

7.1 Experimental setup
In this section, we evaluate the performance and accuracy of our

proposed framework. The simulation tests are performed on a com-

puter equipped with an Intel@ i9-13900KF CPU 24-Core at 5.5GHz

with 128GB RAM, and a GPU NVIDIA GeForce RTX 4090 with 24GB

RAM.

Our tests cover various challenging scenarios, including large-

scale systems, large deformation, non-smooth and massive contacts,
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and accurate frictions. Each simulation typically runs with 5 local-

global iterations, and 10 Conjugate Residual iterations for the con-

straint solver if contacts are involved. The detailed statistics for the

tests are summarized in Table 4.

7.2 Memory usage
We evaluate the memory usage for storing the inverted Cholesky

factor S = L−1I for objects of varying shapes, discretizations, and

element types. Tables 1 and 2 present memory usage comparisons

for surface and volume meshes in our test scenarios. As discussed

in Section 4, the system inverse A−1
shows a high density, and

storing such matrix in the memory becomes soon inhibitive as the

problem size increases. In contrast, our method requires reasonable

memory usage for the sparse inverse of the Cholesky factor. For

large objects with 20𝑘 nodes (60𝑘 DOFs), thememory cost for storing

S generally remains below 1GB, with the volumetric bar being the

only exception.

The topology connection strongly affectsmatrix sparsity, as demon-

strated in Table 2. Generally, objects with more complex shapes have

fewer connections (fewer elements), resulting in sparser matrices

and lower memory requirements for S. This conclusion is also ev-

ident in the triangle meshes shown in Table 1 where the bending

constraints introduce virtual topology connections and increase the

matrix fill-in.

7.3 Performance and accuracy evaluation
In Figure 5, we compare the convergence rate and the performance

between our method and incomplete solutions. In the test, a bar

is twisted with rotational boundary conditions applied to its ends

(Figures 5a). We take the Jacobi’s method [Wang 2015] as a baseline

and compute the relative error against the ground truth q∗. Since
both complete and incomplete solutions can be accelerated via the

Chebyshev method [Wang 2015], we exclude the Chebyshev method

from our comparison.

In Figure 5b, we plot the convergence rate and observe that the

complete solution quickly reduces the errors in the first iterations,

for both low and high stiffness systems. In contrast, the incomplete

solution, approximating the global step with a single Jacobi itera-

tion, converges slowly due to the inefficiency in propagating the

local results. Furthermore, the incomplete method exhibits severely

limited convergence for highly stiff systems. For example, when

applied to an elastic bar with Young’s modulus 𝐸 ≥ 10
7
, the method

fails to achieve an accuracy of 10
−3

even after 1000 iterations.

In Figure 5c, we compare the relative error with respect to com-

putational time. Combining the effect of computational efficiency

(both local and global costs) and convergence rates, our method sub-

stantially outperforms the incomplete approach across all stiffness

levels. This gap will be more significant when solving nonlinear

local problems, such as simulating Neo-Hookean materials, which

requires more computational costs in local steps. This highlights the

inherent simplicity of our method: even with a basic implementation

of the local step, our method achieves a high accuracy within real-

time computational constraints. Conversely, while the incomplete

method may achieve favorable results with optimized local steps,

its performance exhibits high sensitivity to implementation details.

The magnified plot (Figure 5c, right) illustrates the rapid conver-

gence of our method within real-time computational constraints,

achieving high accuracy (error < 10
−3
) for both low and high stiff-

ness elastic materials. In contrast, for low-stiffness systems, the

incomplete method achieves a limited accuracy (error=0.1) within

real-time constraints. The performance deteriorates further in high-

stiffness scenarios, where solutions deviate significantly from the

ground truth.

Table 1. Memory usage (MB) for storing matrices inverse (in double floating) with triangular surface meshes.

Shape Square cloth (no bending) Square cloth (isometric bending) Square cloth (Laplace-Beltrami bending)

Vertex 5.1k 10.2k 15.3k 20.2k 5.1k 10.2k 15.3k 20.2k 5.1k 10.2k 15.3k 20.2k

Tri. 10.0k 20.2k 30.3k 40.0k 10.0k 20.2k 30.3k 40.0k 10.0k 20.2k 30.3k 40.0k

A 1.67 3.37 5.05 6.67 2.58 5.20 7.81 10.31 5.22 10.58 15.93 21.08

L 3.34 7.58 11.87 16.42 9.81 22.83 37.29 51.51 18.37 43.36 71.58 99.85

A−1
893.33 3589.46 8050.51 14010.30 893.33 3589.46 8050.51 14010.30 893.33 3589.46 8050.51 14010.30

S 34.80 102.51 183.79 280.41 62.37 183.82 342.68 523.36 87.08 258.85 487.14 749.10

Table 2. Memory usage (MB) for matrices inverse (in double floating) with tetrahedral volume meshes

Shape Raptor Ball Bar Wooper Gingerbreadman

Vertex 10.0k 15.0k 20.1k 7.1k 14.7k 5.3k 11.3k 20.8k 5.3k 11.1k 11.8k 19.5k

Tetra. 33.9k 54.4k 77.0k 37.5k 81.7k 26.4k 59.0k 111.1k 20.4k 52.5k 48.2k 93.6k

A 5.49 8.40 11.48 4.68 9.95 3.36 7.35 13.67 3.00 7.14 6.66 12.25

L 19.21 37.98 63.44 51.53 152.86 28.26 84.23 203.90 13.46 51.31 36.01 90.37

A−1
3661.43 8071.55 14308.70 1744.86 7452.21 961.48 4414.98 14870.70 973.51 4784.48 4255.27 13045.50

S 120.00 260.85 467.58 266.87 946.97 125.02 463.03 1310.19 67.14 295.09 227.30 619.41
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(a) Test scenario: twisting bar. (b) Comparison of relative error with respect to L-G iterations.

(c) Comparison of relative error with respect to computational time (ms): convergence rate (left) and performance at real-time frame rates of 30 FPS and 60

FPS (right).

Fig. 5. Performance and accuracy evaluation in scenario under large rotational deformation: The relative error is defined as (𝜖 (q𝑘 ) − 𝜖 (q∗ ) )/(𝜖 (q0 ) − 𝜖 (q∗ ))
with 𝜖 the system energy and q∗ the ground truth (the converged solution in Newton’s method). (a) At Frame 800 where the bar is largely deformed, we
compare the convergence rate in different stiffness settings. (b) We plot the same comparison of convergence behavior with particular emphasis on the
accuracy achieved within real-time computational constraints.

7.4 Comparison with forward/backward substitutions
In order to comprehensively evaluate the performance of our sparse

inverse method proposed in Section 4.2, we conducted experiments

using the "Twisting Bar" benchmark in Section 7.3 to compare the

matrix multiplications and forward/backward substitutions on the

GPU. NVIDIA cuSPARSE provides the SpSV function for STS, en-

abling direct comparisons within a consistent computational frame-

work. As illustrated in Table 3, the SpMV operation consistently

outperforms SpSV by approximately 5×– 10× across various ver-

tex counts, indicating a significant efficiency advantage. This per-

formance gap is expected to widen further in scenarios involving

Schur-complement operations in Equation (27) due to the presence

of multiple RHS.

7.5 Hyperelastic material
To show the compatibility with different hyperelastic materials, we

make extension tests similar to those in [Trusty et al. 2022] and

Table 3. Performance comparison between SpSV and SpMV in the "Twisting
Bar" experiment in different scales of problem.

Operation 5.3k 11.3k 20.8k

Forward

SpSV (Lx = y) 1.33 ms 2.92 ms 5.85 ms

SpMV (x = Sy) 0.11 ms 0.39 ms 1.09 ms

Backward

SpSV (LTx = y) 1.34 ms 2.94 ms 5.94 ms

SpMV (x = STy) 0.12 ms 0.41 ms 1.09 ms

[Macklin et al. 2019]. Figure 6 compares different elastic materials

(Neo-Hookean, co-rotational, and ARAP) applied to an identical

square cloth. We observe different volume preservation capability:

The linear co-rotational model exibits high volume loss compared

to the Neo-Hookean model, while the ARAP material only deforms

orthogonally due to the omission of the preservation item in its

local energy formulation.
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(a) Rest shape

(b) ARAP material after stretching

(c) Co-rotational material after stretching

(d) Neo-Hookean material after stretching

Fig. 6. Cloth Extension: capability of volume preservation with different
elastic materials.

7.6 Complementarity precondition and friction accuracy
To evaluate the accuracy of the complementarity preconditioner

proposed in Section 5.4, we make a stick-sliding test similar to that

in [Larionov et al. 2021]. In Figure 4, we simulate an elastic square

box with high stiffness (𝜌 = 1000𝑘𝑔/𝑚3
, 𝐸 = 10

8𝑃𝑎) on a slope

inclined at 10 degrees to the horizontal. The analytical stick-sliding

discontinuity occurs at 𝜇∗ = 𝑡𝑎𝑛(10𝜋/180) = 0.17632698. In this test,

the problems are solved with 10 L-G iterations and 24 CR iterations

for constraint resolution.

While the mass-inverse approach [Macklin et al. 2019] achieves

a sliding accuracy of only 0.1, our system-inverse method based

on Equation (28) captures such discontinuity with a precision of

0.001. This aligns with our analysis in Section 5.4: For systems

with high stiffness, it is generally the stiffness item that dominates

the system diagonal. In this case, the mass inverse elements are

generally significantly larger than those of the actual system inverse.

As a result, the non-smooth indicators frequently fall within the

range | ¤𝜹𝑓 | ≤ r(𝜇𝝀𝑛 − |𝝀𝑓 |). In the phase of solving linear system,

this forces the numerical solver to reduce v to zeros, resulting in

undesired sticking behavior (Figure 4b). Consequently, this gap

makes it hard to capture the discontinuities within a few iterations.

In contrast, our method uses exactly the system inverse, resulting in

efficient capture of the discontinuities and high accuracy of friction

behavior.

(a) Frame 0 (b) Frame 60

(c) Frame 90 (d) Frame 300

Fig. 7. Cloth on Knives: stable cloth simulation with non-smooth and codi-
mensional contacts.

7.7 Non-smooth and codimensional contacts
We apply our methods in a scenario similar to that in [Li et al. 2020].

In Figure 7, a square cloth falls onto codimensional triangle-shaped

obstacles. Unlike the IPC test, we use a triangle surface mesh instead

of a thin volumetric mat. Collision handling for triangle meshes is

generally more challenging than for volumetric meshes with finite

thickness, as infinitely thin structures can generate large motions

that typically lead to instabilities. Owning to the fast convergence

of the CR solver, our method can efficiently reach a desired accuracy

in a few iterations, thereby maintaining a good stability.

(a) Frame 0 (b) Frame 120

Fig. 8. Sharp Corner: stable simulation of cloth mesh on sharp corner ob-
stacle, with rich and non-smooth contacts.

Another scenario with non-smooth contacts is demonstrated in

Figure 8, where a cloth falls on to a static cube obstacle. Rich contact

is the key difference between this example and the previous one.
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For a cloth containing 10.2𝑘 vertices, such collision event gener-

ates 8.62𝑘 contact constraints (see Table 4), creating a challenging

large-scale contact problem. The CR solver efficiently reduces errors

within a few iterations, resulting in stable behavior. Computing the

Schur complement is computationally intensive even with acceler-

ation techniques. Owing to our splitting method for non-smooth

indicators in Equation (24), such computation should only be per-

formed once per frame (unlike per Newton iteration in [Macklin

et al. 2019]), significantly reducing computational costs.

(a) Frame 0 (b) Frame 200

(c) Frame 400 (d) Frame 600

Fig. 9. Squeezing Ball: the rolling cylinders strongly squeeze the soft ball,
thereby generating large frictional forces (with 𝜇 = 0.5) that drive the ball
through the gaps.

7.8 Large deformation with contacts
We reproduce another example from [Li et al. 2020]. In Figure 9, a

soft ball drops onto a set of rollers. While being strongly squeezed

by the rolling cylinders, the ball is under large compressions and

therefore generates strong resistant contact forces with the Neo-

Hookean material. This further generates large frictional forces

that pulls the ball through the rollers. After passing through the

obstacles, the soft ball is able to recover its shape, exhibiting a strong

stability. In Table 4, our method efficiently simulates such example at

near real-time rates (46.15𝑚𝑠 per frame for 7𝑘 vertices), significantly

outperforming IPC technique (60𝑠 per frame with same number of

vertices).

We further test contact handling for highly stiff objects undergo-

ing large deformations. In Figure 10, a complex-shaped soft wooper

(𝐸 = 10
7𝑃𝑎) is pulled with a moving positional constraint. Another

similar example is in Figure 1 where a gingerbread man (𝐸 = 10
6𝑃𝑎)

is being pulled though several obstacles. In both cases, the elastic

materials show an interesting behavior to automatically deform and

fit with the obstacle shape. Our method is proven to be stable to

simulate these high-stiffness objects, being a key difference with the

(a) Frame 240 (b) Frame 420

(c) Frame 500 (d) Frame 600

Fig. 10. Pulling Wooper: a moving positional constraint is applied on the
tail of the wooper, pulling it through the thin gap between two cylinders.

incomplete solutions and PBD-like methods (e.g., VBD [Chen et al.

2024]). This is owning to the high efficiency on propagating the

local results through the complete solution, as discussed in Section

4.1.

7.9 Comparison with [Ly et al. 2020]
Under the same global solution strategy, the method proposed in

[Ly et al. 2020] is expected to achieve better performance in solving

contact problems. This is because their approach introduces only

a minor overhead per L-G iteration to check non-smooth condi-

tions for each contact, whereas our method requires assembling

and solving a linear system in the constraint space. However, in

their method, contact constraints are not coupled within each L-G

iteration, potentially resulting in more iterations to accurately re-

solve contact interactions. Moreover, as noted in their paper, their

approach only supports nodal contacts, making it highly challeng-

ing to simulate non-smooth contacts, such as those presented in

Figures 8 and 7.

8 Limitations and future work
Generic local-global methods. Our sparse inverse method ef-

ficiently accelerates the global steps in general local-global inte-

grators. Although our implementations are mainly based on PD

and ADMM-PD, the sparse inverse strategy applicable to various

advanced techniques such as LBFGS-PD [Liu et al. 2017], WRAPD

[Brown andNarain 2021], andMixed-FEM [Trusty et al. 2022].While

these methods generally improve the L-G convergence through L-

BFGS with line search, they all rely on a constant and pre-factorized

system as defined in Equation (6) for efficient computing, thereby

can effectively benefit from our sparse inverse method. We leave

the parallelization of these methods as a future work.

Intersection-free collision. The collision response in our pipeline
is penetration-based. Although the Signorini-Coulomb condition in

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.



Fast But Accurate: A Real-Time Hyperelastic Simulator with Robust Frictional Contact • 15

Table 4. Simulation statics: we report the detail of examples in Section 7. All simulations employ 5 L-G iterations, 10 CR iterations (if contacts are involved),
and a fixed time intervalℎ = 0.01𝑠 . For each example, we choose several discretizations (from 5𝑘 to 20𝑘 vertices) for the soft objects to compare the performance
in different scales of problem. We detail the memory usage for storing the sparse inverse S, and maximum number of contact constraints during simulation.
Owning to our splitting non-smooth indicator strategy, the Schur-complement (Schur.) is performed once per frame and the other steps are performed once
per LG iteration. The SpMV operations in the global step (Global), the assembly phase (Assem.), the constraint linear solution (Cst. Solve), the constraint
correction (Corr.), and the total constrained global step (Cst. Global) are presented respectively. The total cost of each frame without the collision detection
(Frame max*) is measured when maximum contact pairs are presented. *The local step (Local*) is parallelized on the CPU, while the other steps are on the
GPU, therefore the total time step (Time Step max*) being the measure of a hybrid implementation.

Example

Mesh Elasticity Memory Contact Time cost (ms)

Vert. Elem. Constitutive 𝜌 (𝑘𝑔/𝑚3), 𝐸 (𝑃𝑎), 𝜈 S (MB) max. Schur. Local* Global Assem. Cst. Solve Corr. Cst. Global Time Step max*

Twisting Bar

5.3k 26.4k ARAP 1000, 1E+9, 0.45 125.02 N/A N/A 0.87 0.27 N/A N/A N/A N/A 6.23

11.3k 59.0k ARAP 1000, 1E+9, 0.45 463.03 N/A N/A 1.67 0.86 N/A N/A N/A N/A 13.55

20.8k 111.1k ARAP 1000, 1E+9, 0.45 1310.19 N/A N/A 2.99 2.41 N/A N/A N/A N/A 28.55

Cloth Extension

10.2k 20.2k ARAP 1000, 1E+5, 0.45 102.51 N/A N/A 0.39 0.33 N/A N/A N/A N/A 4.44

10.2k 20.2k Co-rotation 1000, 1E+5, 0.45 102.51 N/A N/A 0.87 0.23 N/A N/A N/A N/A 6.43

10.2k 20.2k Neo-Hookean 1000, 1E+5, 0.45 102.51 N/A N/A 0.93 0.23 N/A N/A N/A N/A 6.65

20.2k 40.0k ARAP 1000, 1E+5, 0.45 280.41 N/A N/A 0.59 0.58 N/A N/A N/A N/A 7.53

20.2k 40.0k Co-rotation 1000, 1E+5, 0.45 280.41 N/A N/A 1.59 0.51 N/A N/A N/A N/A 12.11

20.2k 40.0k Neo-Hookean 1000, 1E+5, 0.45 280.41 N/A N/A 1.73 0.52 N/A N/A N/A N/A 12.88

Cloth on Knives

5.1k 10.0k Neo-Hookean 1000, 1E+5, 0.4 62.37 0.76k 3.45 0.47 0.13 0.25 0.54 0.18 0.98 14.73

10.2k 20.2k Neo-Hookean 1000, 1E+5, 0.4 183.82 1.19k 5.37 0.79 0.33 0.46 0.52 0.36 1.35 21.42

15.3k 30.3k Neo-Hookean 1000, 1E+5, 0.4 342.68 1.78k 11.07 1.09 0.59 0.80 0.60 0.62 2.02 33.02

Sharp Corner

5.1k 10.0k Neo-Hookean 1000, 1E+5, 0.4 62.37 4.57k 41.45 0.34 0.14 0.87 2.79 0.15 3.82 70.77

10.2k 20.2k Neo-Hookean 1000, 1E+5, 0.4 183.82 8.62k 200.08 0.49 0.37 2.66 9.13 0.37 12.15 277.36

Squeezing Ball

7.1k 37.5k Neo-Hookean 1000, 1E+4, 0.4 266.87 3.18k 11.60 2.75 0.50 0.99 1.39 0.51 2.89 46.15

14.7k 81.7k Neo-Hookean 1000, 1E+4, 0.4 946.97 4.62k 27.91 6.09 1.61 2.46 2.80 1.67 6.92 102.01

Pulling Wooper

5.3k 20.4k Neo-Hookean 1000, 1E+7, 0.3 67.14 0.42k 4.76 1.25 0.14 0.26 0.54 0.19 0.98 19.95

11.8k 52.5k Neo-Hookean 1000, 1E+7, 0.3 295.09 0.73k 16.30 3.06 0.54 0.77 0.51 0.59 1.87 46.20

Gingerbread Man

11.1k 48.2k Neo-Hookean 1000, 1E+6, 0.3 227.30 0.74k 8.37 2.77 0.41 0.59 0.48 0.45 1.52 34.75

19.5k 93.6k Neo-Hookean 1000, 1E+6, 0.3 619.41 0.80k 14.16 5.03 1.05 1.30 0.50 1.15 2.95 59.76

Grabbing Raptor

10.3k 34.7k Neo-Hookean 10, 2E+4, 0.1 120.00 0.14k 2.42 1.72 0.23 0.37 0.62 0.28 1.27 21.49

15.3k 55.2k Neo-Hookean 10, 2E+4, 0.1 260.85 0.13k 2.43 2.63 0.45 0.62 0.71 0.51 1.84 29.68

20.4k 77.8k Neo-Hookean 10, 2E+4, 0.1 467.58 0.14k 2.62 3.51 0.80 1.08 0.63 0.89 2.61 38.62

Equation (45) theoretically ensures intersection-free contacts, such

condition is generally never exactly met due to numerical reasons.

Therefore, unlike IPC [Li et al. 2020], our method cannot guarantee

intersection-free. Exploring such intersection-free collision could

be an interesting topic in future work.

Topology changes. Since the efficiency of our sparse inverse

method strongly relies on the pre-computation of S, it is challenging
to to handle topology-altering events such as cutting and tearing.

A possibly valuable exploration is to efficiently update S with the

progressively updated Cholesky factor proposed in [Herholz and

Sorkine-Hornung 2020; Zhang et al. 2022].

Hyper-rich contacts. As shown in Table 4, the Sharp Corner

example exhibits significant computational costs in both the Schur-

complement and the constraint linear solver when contact con-

straints reach a massive scale (8.62𝑘). Although our splitting strat-

egy reduces the Schur-complement computation to once per time

step, such computing process, plus the large-scale linear solution

process, still prevent a real-time performance. We suggest simpli-

fying contact constraints by reducing the contact space dimension,

such as grouping the contacts in specific areas [Allard et al. 2010].

9 Conclusion
In this manuscript, we introduce a unified, GPU-friendly framework

for simulating elastic objects in the presence of general contacts.

Through our proposed reformulation, we adeptly address nonlinear

and non-smooth challenges by integrating nonlinear complemen-

tarity conditions into the local-global iterations. To optimize perfor-

mance, we introduce two crucial strategies: a sparse inverse method

for parallelizing the local-global integrators while maintaining a

rapid convergence rate, and a splitting strategy for non-smooth

indicators, which largely reduces Schur-complement computation

while refining the complementarity preconditioner. With the ex-

perimental results in various examples, we effectively demonstrate

the generality, efficiency, accuracy, and robustness of our method

in handling hyperelasticity and frictional contacts. Notably, our

approach emphasizes simplicity, as the core operations rely on stan-

dard sparse matrix operations. We believe this simplicity makes our

framework applicable across various downstream fields.
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A Frictional contact constraints

A.1 Constraint linearization
For each contact pair 𝑗 , we unify the constraint directions (

®𝑏, ®𝑛, and
®𝑓 ) as a general form ®𝑐:

𝛿𝑐,𝑗 = ®𝑐 𝑗 · 𝚫 𝑗

𝜆𝑐,𝑗 = ®𝑐 𝑗 · 𝚲𝑗
(29)

Interpenetration linearization. For the interpenetrationmeasure along

®𝑏 and ®𝑛, we have:

𝛿𝑐,𝑗 = ®𝑐 𝑗 · 𝚫 𝑗 = ®𝑐 𝑗 · (C𝑗q − p̂𝑗 ) = ®𝑐 𝑗 · C𝑗q − ®𝑐 𝑗 · p̂𝑗 (30)

while the relative velocity in the tangent space (which is needed

in the Coulomb’s law for friction formulation, see A.2) is given as

follows:

¤𝛿𝑓 , 𝑗 = ®𝑓𝑗 ·(
𝜕𝚫 𝑗

𝜕𝑡
−û𝑗 ) = ®𝑓𝑗 ·(

𝜕(C𝑗q − p̂𝑖 )
𝜕𝑡

−û𝑗 ) = ®𝑓𝑗 ·C𝑗v− ®𝑓𝑗 ·û𝑗 (31)

where û is the velocity of the moving obstacle if there exist one

within the contact pair (see details in [Ly et al. 2020]).

Contact forces linearization. We define the force
®𝝀𝑐,𝑗 = 𝜆𝑐,𝑗 · ®𝑐T𝑗 =

®𝑐 𝑗 · 𝝀 𝑗 · ®𝑐T𝑗 that is the component of 𝝀 𝑗 along ®𝑐 𝑗 . For a bilateral

contact pair 𝑗 ∈ B, we have:

CT

𝑗 𝚲𝑗 = ( ®𝑏 · C𝑗 )T𝜆𝑏,𝑗 (32)

For a non-interpenetration contact pair 𝑗 ∈ C, since the the basis ®𝑛
and

®𝑓 are orthonormal basis in euclidean space, we have:

𝚲𝑗 = ®𝑛 𝑗 · 𝚲𝑗 · ®𝑛T𝑗 + ®𝑓𝑗 · 𝚲𝑗 · ®𝑓 T𝑗 = 𝜆𝑛,𝑗 · ®𝑛T𝑗 + 𝜆𝑓 , 𝑗 · ®𝑓 T𝑗 (33)

Consequently, the contact items in the constrained implicit Euler

(2) can be separated into contact and friction items:

CT

𝑗 𝚲𝑗 = CT

𝑗 (®𝑛
T𝜆𝑛,𝑗 + ®𝑓 T𝜆𝑓 , 𝑗 ) = (®𝑛 · C𝑗 )T𝜆𝑛,𝑗 + ( ®𝑓 · C𝑗 )T𝜆𝑓 , 𝑗 (34)

Grouping linearized items. By grouping the contact terms in (30)

(31) (32) (34), we defining the following contact items for different

constraints
®𝑏, ®𝑛, and ®𝑓 :

H𝑏 =


®𝑏𝑏1 · C𝑏1

...

®𝑏𝑏𝑚 · C𝑏𝑚

 , 𝝀𝑏 =


𝜆𝑏1
...

𝜆𝑏𝑚

 ,
d𝑏 =


®𝑏𝑏1 · p̂𝑏1

...

®𝑏𝑏𝑚 · p̂𝑏𝑚

 , 𝜹𝑏 =


𝛿𝑏1
...

𝛿𝑏𝑚


(35)

H𝑛 =


®𝑛𝑐1 · C𝑐1

...

®𝑛𝑐𝑛 · C𝑐𝑛

 , 𝝀𝑛 =


𝜆𝑛,𝑐1
...

𝜆𝑛,𝑐𝑛

 ,
d𝑛 =


®𝑛𝑐1 · p̂𝑐1

...

®𝑛𝑐𝑛 · p̂𝑐𝑛

 , 𝜹𝑛 =


𝛿𝑛,𝑐1
...

𝛿𝑛,𝑐𝑛


(36)

H𝑓 =


®𝑓𝑐1 · C𝑐1

...

®𝑓𝑐𝑛 · C𝑐𝑛

 , 𝝀𝑓 =


𝜆𝑓 ,𝑐1
...

𝜆𝑓 ,𝑐𝑛

 ,
d𝑓 =


®𝑓𝑐1 · û𝑐1

...

®𝑓𝑐𝑛 · û𝑐𝑛

 , ¤𝜹𝑓 =


¤𝛿𝑓 ,𝑐1
...

¤𝛿𝑓 ,𝑐𝑛


(37)

which allows us to convert the governing Equation 2 to linearized

form:

𝜹𝑏 = H𝑏q − d𝑏
𝜹𝑛 = H𝑛q − d𝑛
¤𝜹𝑓 = H𝑓 v − d𝑓

(38)

∑︁
𝑗∈L

CT

𝑗 𝚲𝑗 =
∑︁
𝑗∈B

HT

𝑏,𝑗
𝜆𝑏,𝑗 +

∑︁
𝑗∈C

HT

𝑛,𝑗𝜆𝑛,𝑗 +
∑︁
𝑗∈C

HT

𝑓 , 𝑗
𝜆𝑓 , 𝑗

= HT

𝑏
𝝀𝑏 + HT

𝑛𝝀𝑛 + HT

𝑓
𝝀𝑓

(39)

Computing interpenetration. Note that we do not need to explicitly

compute the velocity in each L-G iteration. In practice, we can

efficiently compute the interpenetration as follows:
𝜹𝑘
𝑏

𝜹𝑘𝑛
ℎ ¤𝜹𝑘

𝑓

 =


H𝑏q𝑘 − d𝑏
H𝑛q𝑘 − d𝑛

H𝑓 (q𝑘 − q𝑡 ) − ℎd𝑓

 =

H𝑏

H𝑛

H𝑓

 q𝑘 −


d𝑏
d𝑛

H𝑓 q𝑡 + ℎd𝑓

 (40)

where the initial interpenetration


d𝑏
d𝑛

H𝑓 q𝑡 + ℎd𝑓

 can be computed

at the beginning of the time step.

A.2 Frictional contact formulation
While the bilateral contact has a simple formula that eliminates the

interpenetration 𝛿𝑏,𝑗 = 0, the non-interpenetration contact is a more

complicated case that is usually formulated with the Signorini’s law

for the contact normal constraints:

0 ≤ 𝛿𝑛,𝑗 ⊥ 𝜆𝑛,𝑗 ≥ 0 (41)

Following the principle of maximal dissipation [Stewart 2000], the

frictional forces
®𝝀𝑓 , 𝑗 remove the maximum amount of energy from

the system while having their magnitude bounded by the normal

forces:

min

®𝝀𝑓 ,𝑗

¤®𝜹T
𝑓 , 𝑗

®𝝀𝑓 , 𝑗

s.t. 𝜆𝑓 , 𝑗 ≤ 𝜇 𝑗𝜆𝑛,𝑗

(42)

where
¤®𝜹𝑓 , 𝑗 measures the relative velocity in the contact space.When

the contact is active (𝜆𝑛 > 0), the first-order KKT conditions for

Equation (42) is given by:

¤𝛿𝑓 , 𝑗 +
| ¤𝛿𝑓 , 𝑗 |
|𝜆𝑓 , 𝑗 |

𝜆𝑓 , 𝑗 = 0 (43)

0 ≤ | ¤𝛿𝑓 , 𝑗 | ⊥ 𝜇 𝑗𝜆𝑛,𝑗 − |𝜆𝑓 , 𝑗 | ≥ 0 (44)

The first condition (43) defines the direction of the frictional force

®𝑓 as the opposite of velocity direction. The second one (44) gives

the complementarity conditions for the cases of sliding (| ¤𝛿𝑓 | > 0)
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and stick (| ¤𝛿𝑓 | = 0). On the other hand, when the contact is inactive

(𝜆𝑛 = 0), the frictional forces should be set as 0.

Combining (41), (43), (44), (36), (37), we assemble the bilateral

condition and Signorini-Coulomb condition:

∀𝑗 ∈ C, 0 ≤ 𝛿𝑛,𝑗 ⊥ 𝜆𝑛,𝑗 ≥ 0

∀𝑗 ∈ A, ¤𝛿𝑓 , 𝑗 +
| ¤𝛿𝑓 , 𝑗 |
|𝜆𝑓 , 𝑗 |

𝜆𝑓 , 𝑗 = 0

∀𝑗 ∈ A, 0 ≤ | ¤𝛿𝑓 , 𝑗 | ⊥ 𝜇 𝑗𝜆𝑛,𝑗 − |𝜆𝑓 , 𝑗 | ≥ 0

∀𝑗 ∈ I, 𝜆𝑓 , 𝑗 = 0

(45)

where A = { 𝑗 ∈ C | 𝜆𝑛,𝑗 > 0} is the set of all active contact indices,
and I = { 𝑗 ∈ C | 𝜆𝑛,𝑗 ≤ 0} is its complement in C.

B Non-smooth functions

B.1 Minimum-Map formulation
For unilateral constraints:

𝝓𝑛 =

{
𝜹𝑛 if 𝜹𝑛 ≤ r𝝀𝑛
r𝝀𝑛 if 𝜹𝑛 > r𝝀𝑛

(46)

J𝑛 =
𝜕𝝓𝑛
𝜕q

=

{
H𝑛 if 𝜹𝑛 ≤ r𝝀𝑛
0 if 𝜹𝑛 > r𝝀𝑛

(47)

E𝑛 =
𝜕𝝓𝑛
𝜕𝝀𝑛

=

{
0 if 𝜹𝑛 ≤ r𝝀𝑛
r if 𝜹𝑛 > r𝝀𝑛

(48)

For friction constraints:

𝝓𝑓 = J𝑓 v + E
𝑓
𝝀𝑓 (49)

J𝑓 =
𝜕𝝓𝑓

𝜕v
=

{
H𝑓 if 𝝀𝑛 > 0
0 if 𝝀𝑛 ≤ 0

(50)

E
𝑓
=

𝜕𝝓𝑓

𝜕𝝀𝑓

=


I if 𝝀𝑛 ≤ 0
0 if 𝝀𝑛 > 0 & | ¤𝜹𝑓 | ≤ r(𝜇𝝀𝑛 − |𝝀𝑓 |)
| ¤𝜹𝑓 |−r(𝜇𝝀𝑛−|𝝀𝑓 | )

𝜇𝝀𝑛
if 𝝀𝑛 > 0 & | ¤𝜹𝑓 | > r(𝜇𝝀𝑛 − |𝝀𝑓 |)

(51)

B.2 Fischer-Burmeister formulation
For unilateral constraints:

𝝓𝑛 = 𝜹𝑛 + r𝝀𝑛 −
√︃
𝜹2𝑛 + r2𝝀2𝑛 (52)

J𝑛 =
𝜕𝝓𝑛
𝜕q

=

(
1 − 𝜹𝑛√︁

𝜹2𝑛 + r2𝝀2𝑛

)
H𝑛 (53)

E𝑛 =
𝜕𝝓𝑛
𝜕𝝀𝑛

=

(
1 − r𝝀𝑛√︁

𝜹2𝑛 + r2𝝀2𝑛

)
r (54)

For friction constraints:

𝝓𝑓 = J𝑓 v + E
𝑓
𝝀𝑓 (55)

J𝑓 =
𝜕𝝓𝑓

𝜕v
=

{
H𝑓 if 𝝀𝑛 > 0
0 if 𝝀𝑛 ≤ 0

(56)

E
𝑓
=

𝜕𝝓𝑓

𝜕𝝀𝑓

=


I if 𝝀𝑛 ≤ 0√︃

¤𝜹2

𝑓
+r2 (𝜇𝝀𝑛−|𝝀𝑓 | )2−r(𝜇𝝀𝑛−|𝝀𝑓 | )

| ¤𝜹𝑓 |+𝜇r𝝀𝑛−
√︃

¤𝜹2

𝑓
+r2 (𝜇𝝀𝑛−|𝝀𝑓 | )2

r if 𝝀𝑛 > 0

(57)

C Soft manipulator

Fig. 11. Soft gripper driven by cables (simulated with bilateral constraints,
highlighted with orange lines).

We apply our methods on a complex gripping task. In Figure

2, a soft gripper [Coevoet et al. 2017] performs a pick-and-place

operation with a soft raptor. The gripper consists of two soft fingers

(detailed in Figure 11), where bilateral constraints are used to sim-

ulate the cable constraints. By pulling and pushing the cable, the

finger performs bending and straightening behavior.

While gripping the raptor, both the fingers and raptor deform to

fit their contact surfaces, generating numbers of contact constraints.

Lifting, rotating, and moving the raptor by the fingers are complex

operations which require precise handling of frictional constraints.

In this scenario, all objects and obstacles are coupled within a uni-

fied system through Equation (18) during each L-G iteration. Our

pipeline efficiently simulates this multi-object system at real-time

rates (see Table 4). Unlike the other scenarios, the contact constraints

remain at the same level when we change the discretization of the

soft raptor. This is because the gripper mesh remains unchanged,

and the collision detection iterates on the finger mesh elements.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.


	Abstract
	1 Introduction
	2 Related work
	2.1 Implicit simulation for elastic dynamics
	2.2 Muti-body Contact

	3 Background
	3.1 Implicit Euler scheme in elastic dynamics
	3.2 Multi-body dynamics
	3.3 Local-global iterative methods

	4 Sparse Inverse Solution
	4.1 Global step solution strategy
	4.2 Sparse inverted local-global method

	5 Multi-body dynamics with accurate frictional contact
	5.1 Constrained global step
	5.2 Non-smooth constrained local-global integration
	5.3 Splitting out non-smooth indicators
	5.4 Complementarity precondition

	6 A GPU-friendly framework and implementation
	7 Results
	7.1 Experimental setup
	7.2 Memory usage
	7.3 Performance and accuracy evaluation
	7.4 Comparison with forward/backward substitutions
	7.5 Hyperelastic material
	7.6 Complementarity precondition and friction accuracy
	7.7 Non-smooth and codimensional contacts
	7.8 Large deformation with contacts
	7.9 Comparison with lyprojective2020

	8 Limitations and future work
	9 Conclusion
	Acknowledgments
	References
	A Frictional contact constraints
	A.1 Constraint linearization
	A.2 Frictional contact formulation

	B Non-smooth functions
	B.1 Minimum-Map formulation
	B.2 Fischer-Burmeister formulation

	C Soft manipulator

